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Our founders are leaders in generative Al and production LLMs.

Sharon Zhou, PhD
+, @Q" « £+(—F+4b

Gregory Diamos, PhD
Co-founder & CTO

» Stanford CS Faculty in Generative Al * MLPerf Co-founder, industry standard for ML perf
« Stanford CS PhD in Generative Al (Andrew Ng) * Landing Al Engineering Head
* MIT Technology Review 35 Under 35, for * Deployed LLM to 1+ billion users;

award-winning research in generative Al lead 125+ engineers; scaled GPU cluster from O to
« Created largest Coursera courses (Generative Al) 100K
» Google Product Manager * 14,000 citations: Al scaling laws, Tensor Cores
» Harvard Classics & CS * NVIDIA CUDA architect - as early as 2008

» Georgia Tech PhD in Computer Engineering

Sanford @G HARVARD  Google Gggileie  GAMVIDIA. 4 LANDING Al

University



INI
LAMINI: LLM FINETUNING & INFERENCE FOR ENTERPRISIIE'AM

Factual LLMs. Up in 10min. Deployed anywhere.

e Factual accuracy with Memory Tuning, ( R j ( - j
cutting hallucinations 10x from 50% to
5% 14 QPs

e 100% guaranteed JSON output
e 52x more queries per second than
vLLM
e Run anywhere
e Air-gappedinstances
e Any cloud VPCs
e Laminicloud 0.269 QPs
° NV|d|a or AMD GPUS Basic Advanced Basic

vLLM Lamini RAG RAG Memory Tuning

95%
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AGENDA

Software 2.0 & Enterprise 2.0

Introducing
1. Research breakthrough for removing hallucinations
2. Technical details & how to build with it
3. Case Study with a Fortune 500 company’s LLM agent
4.

Additional applications
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LAMINI

SOFTWARE 2.0 &
ENTERPRISE 2.0

HALLUCINATIONS ARE
THE #1 BLOCKER
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#1 BLOCKER: GENERAL LLMS HALLUCINATE, BY DESIGN

~ Trust When concrete facts are wrong,
users can't rely on the system
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#1 BLOCKER: GENERAL LLMS HALLUCINATE, BY DESIGN

~ Trust When concrete facts are wrong,
users can't rely on the system

Results Relying on mistaken outputs leads
to bad business outcomes
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INI

#1 BLOCKER: GENERAL LLMS HALLUCINATE, BY DESIGJI{IAM

Hallucinations block high-value use cases for Enterprise 2.0.

L N

~ Trust When concrete facts are wrong,
users can't rely on the system

$ Results Relying on mistaken outputs leads

to bad business outcomes

Uptime Nonexistent APIs and values break

apps

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved $ 8



LAMINI

REDUCING AVERAGE ERROR => HALLUCINATIONS

General LLMs are pretty good at everything, but perfect at nothing.

@ What year did Dave Aguilar climb the Golden Gate Bridge?
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LAMINI

REDUCING AVERAGE ERROR => HALLUCINATIONS

General LLMs are pretty good at everything, but perfect at nothing.

@ What year did Dave Aguilar climb the Golden Gate Bridge?

s He climbed it in
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LAMINI

REDUCING AVERAGE ERROR => HALLUCINATIONS

General LLMs are pretty good at everything, but perfect at nothing.

@ What year did Dave Aguilar climb the Golden Gate Bridge?

s He climbed it in

The 42 1981 1970 three cat

Loss =13.2
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LAMINI

REDUCING AVERAGE ERROR => HALLUCINATIONS

General LLMs are pretty good at everything, but perfect at nothing.

@ What year did Dave Aguilar climb the Golden Gate Bridge?

s He climbed it in
The 42 1981 1970 three cat he 42 1981 1970 three cat
Loss =13.2 Loss =175
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LAMINI

REDUCING AVERAGE ERROR => HALLUCINATIONS

General LLMs are pretty good at everything, but perfect at nothing.

@ What year did Dave Aguilar climb the Golden Gate Bridge?

s He climbed it in

The LLM doesn't A
know a nearly right

answer is still wrong.

The 42 1981 1970 three cat 42 1981 1970 three

Loss =13.2 Loss =175
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LAMINI

PROMPTING & RAG HELP, BUT NOT ENOUGH

Shift model probabilities to consider similar information.

@ What year did Dave Aguilar climb the Golden Gate Bridge?
BE Wikipedia article about the Golden Gate Bridge
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LAMINI

PROMPTING & RAG HELP, BUT NOT ENOUGH

Shift model probabilities to consider similar information.

@ What year did Dave Aguilar climb the Golden Gate Bridge?

BE Wikipedia article about the Golden Gate Bridge

421981 1970 three
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LAMINI

PROMPTING & RAG HELP, BUT NOT ENOUGH

Shift model probabilities to consider similar information.

@ What year did Dave Aguilar climb the Golden Gate Bridge?

BE Wikipedia article about the Golden Gate Bridge

This often works:

% He climbed it in 198L.

421981 1970 three
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LAMINI

PROMPTING & RAG HELP, BUT NOT ENOUGH

Shift model probabilities to consider similar information.

@ What year did Dave Aguilar climb the Golden Gate Bridge?

BE Wikipedia article about the Golden Gate Bridge

This often works:

s He climbed it in 1981,

This sometimes fails:

¢ Heclimbeditin1970. Y€
‘ﬁlg 421981 1970 three
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LAMINI

TAKING A DIFFERENT APPROACH

a What year did Dave Aguilar climb the Golden Gate Bridge?

8 He climbeditin

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved $ 18



LAMINI

TAKING A DIFFERENT APPROACH

a What year did Dave Aguilar climb the Golden Gate Bridge?

s He climbeditin

1981

Loss = 0.00
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IMPORTANT FOR EVERY FOUNDATIONAL GENERATION

He climbed it in

Reduce average loss (generalization)

Zero loss on facts
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IMPORTANT FOR EVERY FOUNDATIONAL GENERATION

He climbed it in 1981

GPT-5

GPT-4

1981

Reduce average loss (generalization)

GPT-3

Loss = 0.00
Zero loss on facts
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LAMINI

INTRODUCING

MEMORY TUNING

EMBED FACTS INTO LLM MEMORY



e What would you like to know?

Models can make mistakes. Check important info.




HOW MEMORY TUNING WORKS

Open-source LLM Mixture of
o i Memory Experts
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HOW MEMORY TUNING WORKS

//H\\
2 e
Open-source LLM 42 19811970 three Mixture of
00 i Memory Experts
Loss =1.75
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HOW MEMORY TUNING WORKS

Open-source LLM

DATA'Al SUMMIT

oQ I+

/_‘\\

42 1981 1970 three

Loss =175

©2024 Databricks Inc. — All rights reserved

Mixture of
Memory Experts

1981

Loss = 0.00
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HOW MEMORY TUNING WORKS



HOW MEMORY TUNING WORKS

User query

Open-source LLM
oQ i
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HOW MEMORY TUNING WORKS

Turn any open-source LLM into a million-way MoE.

a8 =

User query Route ITM Memory Experts

Open-source LLM to adapters

o
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LAMINI
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LAMINI

HOW MEMORY TUNING WORKS

Turn any open-source LLM into a million-way MoE.

Massive array of Memory Experts | @

|
I L

=

‘. I
. T

Cross Attention Self Attention
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HOW MEMORY TUNING WORKS o

Turn any open-source LLM into a million-way MoE.

|
User query Route M Memory Experts -
Open-source LLM to adapters Mixture of
N

Memory Experts

DATA'Al SUMMIT
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HOW MEMORY TUNING WORKS e

Turn any open-source LLM into a million-way MoE.

A

User query

Open-source LLM
o0

DATA'Al SUMMIT

=
s - "
X e
Response to user
Route TM Memory Experts = P
to adapters .
P Mixture of

Memory Experts
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HOW MEMORY TUNING WORKS S

Turn any open-source LLM into a million-way MoE.

|
—_— - .
] — i w
User quer — Response to user
query Route TM Memory Experts P
to adapters .
Open-source LLM P Mixture of
Nk Memory Experts
1981

DATA'Al SUMMIT Loss =175 ©2024 Databricks Inc. — All rights reserved Loss = 0.00 < 33



CASE STUDY: FORTUNE 100 TECH COMPANY

Code Agent for Text-to-SQL

e Mistral v2: 0% accuracy

e + Advanced RAG over multiple

months with software & data o

science teams: ~50% accuracy

e + Memory Tuning within a day: SELECT COUNT(DISTINCT @
94.7% accuracy 5 category) FROM cost sQL DB

Y
l

45
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LAMINI

SQL AGENT WORKFLOW

a w . o L R T

LLM 1 SQL SQL Database SQL Output LLM 2
User query Response to user
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LAMINI

IDENTIFYING FAILURES

Semantically incorrect SQL queries

Can you filter cost data for April? @

H SELECT * FROM cost WHERE month id =® x
'042024"
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LAMINI

CREATE AN EVALUATION DATASET

Curate the easiest examples that still break. Starting small (~20) works!

Evaluation dataset
(20 - 100 examples)

SELECT * FROM cost WHERE month id =@
Y/
'042024"
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MEMORY TUNING

Tune the hallucinating LLM on facts it should get right.

LAMINI

User query

LLM 2

E—

-

Response to user

DATA'Al SUMMIT
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LAMINI

AUTOMATED DATA PREPARATION

Use another LLM agent to transform data, based on hallucination examples.

Prompt: Schema - Generate: Query Prompt: Query - Generate: User Question

Generate questions that
SQL Database LLM sQlL sQL LLM the query can answer
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LAMINI

LET’'S COMPARE

Original LLM vs. Memory-Tuned LLM

Can you filter cost data for April? @

H SELECT * FROM cost WHERE month_ id =@ x
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LAMINI

LET’S COMPARE

Original LLM vs. Memory-Tuned LLM

Can you filter cost data for April? @

H SELECT * FROM cost WHERE month_ id =@ x

H SELECT * FROM cost WHERE month_id = '042024'
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LAMINI

LET’'S COMPARE

Original LLM vs. Memory-Tuned LLM

94.7%

Can you filter cost data for April? @

H SELECT * FROM cost WHERE month_ id =@ x

Memory Tuning

RAG + Prompting

H SELECT * FROM cost WHERE month_id = '042024'

Time spent on approach
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LET’'S COMPARE

DATA'Al SUMMIT

“Finetuning doesn't have a lot of
docs or best practices. It's a lot
of trial and error, so it takes
weeks to finetune a model. & f—r
D€ £ F@ 6111 —, ®+£f0 f1b 01 FAF
-, QS

— Engineering leader at a
Fortune 100 tech company

«©
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APPLICATIONS FOR MEMORY TUNING

D)

0'(o)(o

Text to SQL Classification Precise lookup for chat
Unique internal schemas or Where it's critical to stick to the Internal product IDs & financial
large, messy schemas exact taxonomy & categories facts and figures

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved $
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MEMORY TUNING IN YOUR TOOLBOX

95% Memory
Critical use cases Tuning

Instruction
Fine-tuning

RAG

LLM out

Accuracy of the box

Requirement
9 Cost

Compute requirements, person time, hiring expertise, many iterations
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HOW MEMORY TUNING HELPS YOU

Accuracy

Accuracy of a massive LLM, with
the lower cost & latency of a tiny
LLM.

Recall facts, figures, APIs, IDs with
high precision (90%+ acc).

Integrate with your existing
prompt-engineering & RAG infra.
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HOW MEMORY TUNING HELPS YOU

Accuracy

Accuracy of a massive LLM, with
the lower cost & latency of a tiny
LLM.

Recall facts, figures, APIs, IDs with
high precision (90%+ acc).

Integrate with your existing
prompt-engineering & RAG infra.

DATA'Al SUMMIT

Scalability
Scale up on facts.

Unlike context windows, there is no

limit to the number of facts.

Just add more memory experts.

©2024 Databricks Inc. — All rights reserved
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HOW MEMORY TUNING HELPS YOU

Accuracy

Accuracy of a massive LLM, with
the lower cost & latency of a tiny
LLM.

Recall facts, figures, APIs, IDs with
high precision (90%+ acc).

Integrate with your existing
prompt-engineering & RAG infra.

DATA'Al SUMMIT

Scalability
Scale up on facts.

Unlike context windows, there is no
limit to the number of facts.

Just add more memory experts.

©2024 Databricks Inc. — All rights reserved

Resiliency

Your memory tuning infra is
reusable for upgrading LLMs.

No tech debt, stay resilient to a
dynamic Al landscape.

Easy to update facts to be recalled.



LAMINI

A NEW FRONTIER

Higher accuracy on smaller, faster, cheaper models

New accuracy-speed frontier
with Lamini Memory Tuning
Memory
> .
7) Tuning
©
L.
>
8 SOTA
< + RAG
Previous accuracy- SOTA
speed frontier hosted
models
Speed & Savings Faster & cheaper
< 49
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LAMINI

LAMINI

FACTUAL LLMs. UP IN 1@MIN.
DEPLOYED ANYWHERE.
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