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SOFTWARE 2.0: 
SHIPPING ENTERPRISE 
LLMS WITH NEW 
KNOWLEDGE
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• Stanford CS Faculty in Generative AI
• Stanford CS PhD in Generative AI (Andrew Ng)
• MIT Technology Review 35 Under 35, for   
award-winning research in generative AI

• Created largest Coursera courses (Generative AI)
• Google Product Manager
• Harvard Classics & CS

Our founders are leaders in generative AI and production LLMs.

Gregory Diamos, PhD
Co- founder & CTO

• MLPerf Co-founder, industry standard for ML perf
• Landing AI Engineering Head
• Deployed LLM to 1+ billion users; 
lead 125+ engineers; scaled GPU cluster from 0 to 

100K
• 14,000 citations: AI scaling laws, Tensor Cores
• NVIDIA CUDA architect - as early as 2008
• Georgia Tech PhD in Computer Engineering
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LAMINI: LLM FINETUNING & INFERENCE FOR ENTERPRISE

Factual LLMs. Up in 10min. Deployed anywhere.

• Factual accuracy with Memory Tuning, 
cutting hallucinations 10x from 50% to 
5%

• 100% guaranteed JSON output
• 52x more queries per second than 

vLLM
• Run anywhere

• Air-gapped instances
• Any cloud VPCs
• Lamini cloud
• Nvidia or AMD GPUs
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Software 2.0 & Enterprise 2.0

Introducing Lamini Memory Tuning

1. Research breakthrough for removing hallucinations 

2. Technical details & how to build with it

3. Case Study with a Fortune 500 company’s LLM agent

4. Additional applications
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AGENDA
Software 2.0: Shipping Enterprise LLMs with new knowledge
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SOFTWARE 2.0 & 
ENTERPRISE 2.0
HALLUCINATIONS ARE 
THE #1 BLOCKER
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When concrete facts are wrong, 
users can’t rely on the system

Trust

6

#1 BLOCKER: GENERAL LLMS HALLUCINATE, BY DESIGN

Hallucinations block high-value use cases for Enterprise 2.0. 

6
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Relying on mistaken outputs leads 
to bad business outcomes

Results$
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#1 BLOCKER: GENERAL LLMS HALLUCINATE, BY DESIGN

Hallucinations block high-value use cases for Enterprise 2.0. 
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Relying on mistaken outputs leads 
to bad business outcomes

Results

Nonexistent APIs and values break 
apps

Uptime

$
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General LLMs are pretty good at everything, but perfect at nothing.

REDUCING AVERAGE ERROR => HALLUCINATIONS
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General LLMs are pretty good at everything, but perfect at nothing.

REDUCING AVERAGE ERROR => HALLUCINATIONS
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The LLM doesn’t 
know a nearly right 
answer is still wrong. 

General LLMs are pretty good at everything, but perfect at nothing.

REDUCING AVERAGE ERROR => HALLUCINATIONS
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Shift model probabilities to consider similar information.

PROMPTING & RAG HELP, BUT NOT ENOUGH
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Shift model probabilities to consider similar information.

PROMPTING & RAG HELP, BUT NOT ENOUGH
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TAKING A DIFFERENT APPROACH

18
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TAKING A DIFFERENT APPROACH
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IMPORTANT FOR EVERY FOUNDATIONAL GENERATION

20

Zero loss on facts
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INTRODUCING

MEMORY TUNING
EMBED FACTS INTO LLM MEMORY
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HOW MEMORY TUNING WORKS

24

Near-perfect on facts, pretty good at everything else.
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Near-perfect on facts, pretty good at everything else.
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HOW MEMORY TUNING WORKS
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Turn any open-source LLM into a million-way MoE.
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HOW MEMORY TUNING WORKS
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Turn any open-source LLM into a million-way MoE.
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• Mistral v2: 0% accuracy

• + Advanced RAG over multiple 
months with software & data 
science teams: ~50% accuracy

• + Memory Tuning within a day: 
94.7% accuracy

CASE STUDY: FORTUNE 100 TECH COMPANY

34

Code Agent for Text-to-SQL

34
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SQL AGENT WORKFLOW
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IDENTIFYING FAILURES

36

Semantically incorrect SQL queries

36
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CREATE AN EVALUATION DATASET
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Curate the easiest examples that still break. Starting small (~20) works!

37

Evaluation dataset
(20 - 100 examples)
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MEMORY TUNING

38

Tune the hallucinating LLM on facts it should get right.

38
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Use another LLM agent to transform data, based on hallucination examples.

39

Prompt: Schema → Generate: Query Prompt: Query → Generate: User Question

AUTOMATED DATA PREPARATION
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LET’S COMPARE

4040

Original LLM vs. Memory-Tuned LLM
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LET’S COMPARE
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Original LLM vs. Memory-Tuned LLM
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LET’S COMPARE
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Original LLM vs. Memory-Tuned LLM

Time spent on approach
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LET’S COMPARE

4343

Customer testimonial

“Finetuning doesn’t have a lot of 
docs or best practices. It's a lot 
of trial and error, so it takes 
weeks to finetune a model. ã ƒ̊¬ŕ
Uõ€ ƒ‹ ƒśŕGŕÞ õı ŕı ¬‚ ®”±≠ŕα ƒ̊ ŕÞ õı ŕĂŕ
¬‚ ˇ Òı Ś”

– Engineering leader at a 
Fortune 100 tech company
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Unique internal schemas or 
large, messy schemas

Text to SQL Classification Precise lookup for chat

Where it's critical to stick to the 
exact taxonomy & categories

Internal product IDs & financial 
facts and figures

APPLICATIONS FOR MEMORY TUNING

44

More tasks that require factual accuracy

44
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MEMORY TUNING IN YOUR TOOLBOX

4545
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Accuracy

46

HOW MEMORY TUNING HELPS YOU

Accuracy of a massive LLM, with 
the lower cost & latency of a tiny 
LLM.

Recall facts, figures, APIs, IDs with 
high precision (90%+ acc).

Integrate with your existing 
prompt-engineering & RAG infra.

46
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Accuracy Scalability
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HOW MEMORY TUNING HELPS YOU

Accuracy of a massive LLM, with 
the lower cost & latency of a tiny 
LLM.

Recall facts, figures, APIs, IDs with 
high precision (90%+ acc).

Integrate with your existing 
prompt-engineering & RAG infra.

Scale up on facts. 

Unlike context windows, there is no 
limit to the number of facts. 

Just add more memory experts.
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Accuracy Scalability Resiliency
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HOW MEMORY TUNING HELPS YOU

Accuracy of a massive LLM, with 
the lower cost & latency of a tiny 
LLM.

Recall facts, figures, APIs, IDs with 
high precision (90%+ acc).

Integrate with your existing 
prompt-engineering & RAG infra.

Scale up on facts. 

Unlike context windows, there is no 
limit to the number of facts. 

Just add more memory experts.

Your memory tuning infra is 
reusable for upgrading LLMs.

No tech debt, stay resilient to a 
dynamic AI landscape.

Easy to update facts to be recalled.

48
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A NEW FRONTIER

49
Faster & cheaper

Higher accuracy on smaller, faster, cheaper models
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LAMINI 
FACTUAL LLMs. UP IN 10MIN. 
DEPLOYED ANYWHERE.
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